Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Experimental bounds on the neutrino lifetime depend on the nature of the neutrinos and the details of the potentially new physics responsible for neutrino decay. In the case where the decays involve active neutrinos in the final state, the neutrino masses also qualitatively impact how these manifest themselves experimentally. In order to further understand the impact of nonzero neutrino masses, we explore how observations of solar neutrinos constrain a very simple toy model. We assume that neutrinos are Dirac fermions and there is a new massless scalar that couples to neutrinos such that a heavy neutrino— with mass —can decay into a lighter neutrino— with mass —and a massless scalar. We find that the constraints on the new physics coupling depend, sometimes significantly, on the ratio of the daughter-to-parent neutrino masses and that, for large-enough values of the new physics coupling, the “dark side” of the solar neutrino parameter space— —provides a reasonable fit to solar neutrino data, if only or neutrino data alone are considered, but no allowed region is found in the combined analysis. Our results generalize to other neutrino-decay scenarios, including those that mediate when the neutrino mass ordering is inverted mass and , the mass of . Published by the American Physical Society2024more » « less
-
Abstract Novel neutrino self-interaction can open up viable parameter space for the relic abundance of sterile-neutrino dark matter (S ν DM). In this work, we constrain the relic target using core-collapse supernova which features the same fundamental process and a similar environment to the early universe era when S ν DM is dominantly produced. We present a detailed calculation of the effects of a massive scalar mediated neutrino self-interaction on the supernova cooling rate, including the derivation of the thermal potential in the presence of non-zero chemical potentials from plasma species. Our results demonstrate that the supernova cooling argument can cover the neutrino self-interaction parameter space that complements terrestrial and cosmological probes.more » « less
An official website of the United States government
